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LETTER TO THE EDITOR

Rejection-free microcanonical Monte Carlo method

C M Care
Materials Research Institute, Sheffield Hallam University, Pond Street, Sheffield S1 1WB, UK

Received 28 June 1996

Abstract. Lee has recently described a ‘rejection-free’ microcanonical Monte Carlo technique
in which data is only collected near the centre of a microcanonical window. It is shown here that
data can be efficiently collected from other energy levels in the window and that a ‘rejection-
free’ technique can also be established for these levels. This leads to a significant improvement
in efficiency over the method of Lee.

Lee [1] has described a rejection-free microcanonical Monte Carlo technique which collects
data only from energy levels near the centre of a microcanonical window. In both [1] and
an earlier paper [2] he asserts that it is inefficient to use data from other energy levels
because of repeated rejected moves. However, it is shown below that the quality of the data
collected from the majority of the other levels is essentially the same as those considered
by Lee. It is further shown that it is possible to devise a rejection-free method to collect
data from these other levels and that use of the method gives a significant improvement in
efficiency over the rejection-free method of Lee. The rejection-free method described here,
like that of Lee’s, is similar in spirit to the-fold way algorithm of Bortzet al [3].

There have been numerous studies of microcanonical Monte Carlo methods [4-9]. We
consider here a system with discrete energy levgls,and a density of stateg at each
level. A microcanonical algorithm is typically used to determine the density of states ratios
R; = pi+1/p; with a scheme of the following general form

(i) A state is generated with enerdgy which lies within a contiguous set of energy levels,

W, bounded by a minimum (maximum) allowed eney (Ey) with
W =|{E; . EL <E; < Ey} (1)

(ii) A new state is obtained from the current state by a Monte Carlo process with a symmetric
stochastic transition matrix. In this work, and that of Lee’s, this is achieved by a random
spin flip.

(iii) If the new state has; € W, the state is accepted, otherwise the old state is retained.
Steps (i) and (iii) are repeated/, times and a record is kept of the number of

times, N;, a state with energyt; is observed. It is essential that rejected moves are

included in this counting process. The complete algorithm generates a Markov chain with

a symmetric stochastic transition matrix and such a matrix has a left eigenvéctor. . 1)

with eigenvalue unity. Provided the matrix is irreducible, this will be the limiting distribution

of the Markov chain [11] and consequently

R; ~ E[N;11/Ni] 2
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where E[ f] is the expected value of the random variabfe, In practice, it is wise to run
the algorithm forNeq, steps in the energy window, in order to allow equilibration of the
system withinW.

Attempted moves on states near the edges of the energy wifiddead to rejected
moves if the trial states generated by (ii) do not lie wittdh This problem becomes
particularly severe for energies near the ground state, because for low energe's thie
large. In this case, the algorithm mainly samples the highest energy level in the window
and a large number of moves are rejected. For this reason, Lee only collects data from
states at the centre d¥ for which all attempted moves are accepted. For a %plaing
system in three dimensions on a simple cubic lattice this requires three ‘guard’ levels at
the edges oW and the number of moves required to sample one state in the cenive of
is O(R* whereR is a typical value forR; in W. However, for a spin-1 system in two
dimensions, the number of required ‘guard’ levels rises to eight at each edge dhe
number of moves required to make one observation of a level at the cenWeriskes to
O(R®) [8] and the use of guard levels becomes impractical.

In order to test Lee’s original method [1], we undertook a simulation df ari. x L spin-

% Ising model € = —J Zm” 0;0;) on a simple cubic lattice using the algorithm described
above, with the width of the energy windowy, set to eight and wittW positioned close

to the ground state. These levels were chosen because the low energy states give rise to
the greatest inefficiency in the microcanonical method and also because exact results are
available for the density of states [10]. The results of two simulationsLfer 10 and

L = 20 are shown in table 1 and in each case the runs consisi¥g,e& 10° equilibration

moves andV, = 4 x 10° data collection moves. The results were not sensitive to the choice

of of Nequ The energy values are given as= (E; + qL3/2)/(4J) whereq = 6 is the
co-ordination number of the lattice. The fractional standard effStin the estimates of

R; is calculated by dividing the data into 40 blocks of attempted moves and determining
the variance in the block averages. In the table we quote the quantigfined by

ngaxact_ Ri
exact rest
R

©)

x=|

and it can be seen that all the values)ofare O(1). Thus £ represents an acceptable
method of estimating the error in the simulation. If each data point were statistically
independent we would expect the number of observations at each level in the window to be
described by a multinomial distribution with variance for the number of observations at each
level given byN, p; (1 — p;), wherep; is the probability of observing the system in energy
level E;. We define a ‘statistical inefficiencyt,, as the ratio of the measured variance to that
predicted for independent data. In the calculation of the statistical inefficiency, we estimate
the p; from the total post-equilibration data set. The statistical inefficiency may equivalently
be calculated as the ratio of (i) the actual number of observations at an energy level to (i)
the number of observations which would be needed to produce the same fractional error
from independent data. As can be seen in table 1, the statistical inefficiency of the data
with repeatedly rejected moves is very high but the fractional error is little different from
the data collected near the centre of the window for which there are no rejected moves.
Thus, although a large number of states are rejected, this is compensated for by the number
of times these states are observed.

The method may be improved by classifying the sites in the manner shown in table
2 [3, 1]. We may then only consider sites at which a spin flip will lead to a state lying
within W and hence give a successful move. In order to use this approach it is necessary to
maintain appropriate tables after each spin flip [3] and this is computationally efficient only
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Table 1. Typical results of standard microcanonical Monte Carlo simulation of three dimensional
§ = 1 Ising model on a simple cubic lattice with; = 4 x 105 ¢;, N;, R;, £, R®2% x and
t are defined in the text.

L} ¢ N; R; 100x fest  React X T
12 6026x 10°  0.2861 2.6 ®889 0.38 1.1
13 1724x10° 41.65 2.3 40.98 0.72 081
14 7180x 10 16.39 0.68 16.56 15 28
108 15 1177x10°  0.5698 0.37 0.5673 12 7.7
16 6&705x 10° 25.90 0.40 25.87 03 46
17 1737x 100 11.12 0.39 11.17 1.0 Ix1?
18 1932x 108 0.9706 0.33 2 x 1063
19 1875x 10° 1.8 x 10
12 157x 107 0.03185 43 0.03603 0.27 15
13 5x 1 427.6 43 332.6 0.67 0.90
14 2138x 10° 1235 3.8 133.1 1.89 3.1
200 15 2641x 10° 0.07368 2.8 0.07129 1.2 4.6
16 1946x 10 208.4 4.1 210.0 0.18 15
17 4055x 10°  86.55 3.2 88.71 077 .@x10°
18 3510x 108 0.1273 2.7 D x 104
19 4467x 107 3.6 x 10*

Table 2. Classification of sites for two dimension&l = % Ising model on a square lattice.
AE/4J is the change in energy if the spin is flipped. In general, the number of clasgesis
wheregq is the co-ordination number of the lattice.

Class Spin Number of spin-up AE/4J
nearest neighbours

1 Up 4 2
2 Up 3 1
3 Up 2 0
4 Up 1 -1
5 Up 0 -2
5 Down 4 -2
4 Down 3 -1
3 Down 2 0
2 Down 1 1
1 Down O 2

for the relatively low energy states where there will be a high number of rejected moves. It
is important to note that the result (2) can only be used directly on levels for which every
move is accepted. Provided the winddW is made sufficiently wide, there will be some
such levels at the centre #f and this is the approach adopted by Lee. However, this wastes
the move which must still be made in the boundary leveld¥gfand it is straightforward
to develop an algorithm which makes use of these levels.

Consider a state for which it is known that sites will lead to rejected moves and
N, sites will lead to accepted moves. If we run the simple spin flip algorithm there will
be a number of rejected moves before a successful move is undertaken and the number of
rejected moves must be counted if the result (2) is to be used. However, we can avoid
undertaking the rejected moves if we consider the underlying process in the random flip
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method. At each flip there is a probabili& = N.(N, + N,) of the move being rejected

and a probability - P, of the move being accepted and we therefore need to generate
a random number with the same distribution as the number of flips needed to obtain a
successful flip. The probability of makingflips, of which only the last is successful, is

pr =P (1-P) (4)

where 1< k < oo and) "2, px = 1. In order to sample from this distribution we note that
the associated cumulative distributiafy,, is given by

Cn=) PF'd-P)y=1-P" (5)
k=1

Hence if we generate a random numbgruniformly distributed in the range @ ¢ < 1,
the numbenn given by

G
m— Int [m o 1] ®)

will have been drawn from the required distribution. Thus, if a statecludes some sites
which will lead to rejected moves, a ‘rejection-free’ algorithm will still be maintained by

(i) randomly selecting the new site from the states which will lead to an accepted move
(ii) generating a numben as described above and adding thigtanstead of incrementing

The results of using this method are shown in table 3. The simulations consisted of
Nequ = 10 equilibration moves andv; = 2.4 x 10’ data collection moves. It can be
seen from this table that, once agah), data with essentially the same accuracy has been
obtained for all but the lowest energies in the microcanical windd@w,The error estimates
from using block averaging are also seen to be reasonable when compared with the errors

Table 3. Typical results of rejection-free microcanonical Monte Carlo simulation of three
dimensional§ = % Ising model on a simple cubic lattice witN, = 2.4 x 10°. N7 is

the value ofN; corrected by use of equation 6. The quantiigsV;, R;, £, R®*®! x, t’ and

€ are defined in the text.

L3 & N NEoT R; 100x fest  Rexact x 4 €
12 2763x 10 2.775x 104 0.2939 1.2 0.2889 15 0.79 30
13 8107x 10® 8154x 10°  40.35 1.1 40.98 15 0.87 28
14 3280x10° 3.290x 10°  16.60 0.26 16.56 1.0 16 41

100 15 5462x10° 5.462x 10° 0.5666 0.18 0.5673 0.68 9.9 25
16 3095x 10° 3.095x 10°  25.86 0.20 25.87 023 48 26
17 3175x 10°fF  8.002x 107  11.19 0.20 11.17 11 76 23
18 5824x 10°F 8957x 1C° 0.9675 0.18 19 21
19 6081x 10° 8.666x 10° 16
12 6485x 10® 6.489x 10° 0.03914 6.7 0.03603 1.3 1.4 260
13  2530x 10° 2540x 10°  310.8 6.5 332.6 1.0 1.1 260
14 7891x 10 7.894x 10*  131.9 0.55 133.1 1.6 2.4 290

200 15 1041x 10" 1.041x 10’ 0.07173 0.44 0.07129 1.4 4.0 250
16 7469x 10°  7.469x 10°  209.6 0.59 210.0 034 14 310
17 7807x10° 1.565x 10° 88.35 0.41 88.71 1.0 13 370
18 1047x 10° 1.383x 1010 0.1242 0.43 36 250

19 1505x 10°f  1.717x 10° 30
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with respect to the exact values (i.g). The statistical efficiencys’, in this set of data
is calculated using the actual number of observatiawis,at each level, rather than the
the corrected values since this gives a more realistic measure of the true efficiency of the
method.
The simplest measure of the effectiveness of the rejection-free technique is the relative
efficiency, e, defined by [12]
o2ty

€= )

O'rzftrf

whereo? (arzf) is the variance and, () is the computational time associated with the
standard method (rejection-free method). The times were all measured on the same machine
and no particular effort was made to optimise the code. The rejection-free code took
approximately three times as long per attempted move than the standard code. However,
the probability of a successful move in the highest energy level for the standard method
is >~ 1/140 (>~ 1/1150 for the L = 10 (L = 20) lattices. These values combined with

the time penalty for the rejection-free method are consistent with the effective time saving
implied by the observed efficiencies. It was found that whign= E., where E. is the
expected value of the energy at the critical temperature, the efficieney,1.0 (0.6) for

L =10 (20).

In conclusion, it has been shown that all the levels in the microcanonical window,
except the lowest, may be used in the microcanical Monte Carlo method and further that a
rejection-free technique is straightforward to devise for all the levels. In the Ising%spin—
models this yields a considerable improvement in efficiency over Lee’s [1] algorithm. For
other spin models, such as the Blume Capel [8] model, the gain is expected to be even more
significant.
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