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LETTER TO THE EDITOR

Rejection-free microcanonical Monte Carlo method
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Materials Research Institute, Sheffield Hallam University, Pond Street, Sheffield S1 1WB, UK

Received 28 June 1996

Abstract. Lee has recently described a ‘rejection-free’ microcanonical Monte Carlo technique
in which data is only collected near the centre of a microcanonical window. It is shown here that
data can be efficiently collected from other energy levels in the window and that a ‘rejection-
free’ technique can also be established for these levels. This leads to a significant improvement
in efficiency over the method of Lee.

Lee [1] has described a rejection-free microcanonical Monte Carlo technique which collects
data only from energy levels near the centre of a microcanonical window. In both [1] and
an earlier paper [2] he asserts that it is inefficient to use data from other energy levels
because of repeated rejected moves. However, it is shown below that the quality of the data
collected from the majority of the other levels is essentially the same as those considered
by Lee. It is further shown that it is possible to devise a rejection-free method to collect
data from these other levels and that use of the method gives a significant improvement in
efficiency over the rejection-free method of Lee. The rejection-free method described here,
like that of Lee’s, is similar in spirit to then-fold way algorithm of Bortzet al [3].

There have been numerous studies of microcanonical Monte Carlo methods [4–9]. We
consider here a system with discrete energy levels,Ei , and a density of statesρi at each
level. A microcanonical algorithm is typically used to determine the density of states ratios
Ri = ρi+1/ρi with a scheme of the following general form

(i) A state is generated with energyEi which lies within a contiguous set of energy levels,
W , bounded by a minimum (maximum) allowed energyEL (EU ) with

W = {Ei : EL 6 Ei 6 EU } (1)

(ii) A new state is obtained from the current state by a Monte Carlo process with a symmetric
stochastic transition matrix. In this work, and that of Lee’s, this is achieved by a random
spin flip.

(iii) If the new state hasEi ∈ W , the state is accepted, otherwise the old state is retained.

Steps (ii) and (iii) are repeatedNs times and a record is kept of the number of
times, Ni , a state with energyEi is observed. It is essential that rejected moves are
included in this counting process. The complete algorithm generates a Markov chain with
a symmetric stochastic transition matrix and such a matrix has a left eigenvector(1, 1 . . . 1)

with eigenvalue unity. Provided the matrix is irreducible, this will be the limiting distribution
of the Markov chain [11] and consequently

Ri ' E[Ni+1/Ni ] (2)
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whereE[f ] is the expected value of the random variable,f . In practice, it is wise to run
the algorithm forNequ steps in the energy window, in order to allow equilibration of the
system withinW .

Attempted moves on states near the edges of the energy windowW lead to rejected
moves if the trial states generated by (ii) do not lie withinW . This problem becomes
particularly severe for energies near the ground state, because for low energies theRi ’s are
large. In this case, the algorithm mainly samples the highest energy level in the window
and a large number of moves are rejected. For this reason, Lee only collects data from
states at the centre ofW for which all attempted moves are accepted. For a spin-1

2 Ising
system in three dimensions on a simple cubic lattice this requires three ‘guard’ levels at
the edges ofW and the number of moves required to sample one state in the centre ofW

is O(R4) whereR is a typical value forRi in W . However, for a spin-1 system in two
dimensions, the number of required ‘guard’ levels rises to eight at each edge ofW . The
number of moves required to make one observation of a level at the centre ofW rises to
O(R9) [8] and the use of guard levels becomes impractical.

In order to test Lee’s original method [1], we undertook a simulation of anL×L×L spin-
1
2 Ising model (E = −J

∑
〈i,j〉 σiσj ) on a simple cubic lattice using the algorithm described

above, with the width of the energy window,W , set to eight and withW positioned close
to the ground state. These levels were chosen because the low energy states give rise to
the greatest inefficiency in the microcanonical method and also because exact results are
available for the density of states [10]. The results of two simulations forL = 10 and
L = 20 are shown in table 1 and in each case the runs consisted ofNequ = 105 equilibration
moves andNs = 4×108 data collection moves. The results were not sensitive to the choice
of of Nequ. The energy values are given asei = (Ei + qL3/2)/(4J ) whereq = 6 is the
co-ordination number of the lattice. The fractional standard errorf est

i in the estimates of
Ri is calculated by dividing the data into 40 blocks of attempted moves and determining
the variance in the block averages. In the table we quote the quantityχ defined by

χ =
∣∣∣∣Rexact

i − Ri

Rexact
i f est

i

∣∣∣∣ (3)

and it can be seen that all the values ofχ are O(1). Thusf est
i represents an acceptable

method of estimating the error in the simulation. If each data point were statistically
independent we would expect the number of observations at each level in the window to be
described by a multinomial distribution with variance for the number of observations at each
level given byNspi(1− pi), wherepi is the probability of observing the system in energy
levelEi . We define a ‘statistical inefficiency’,τ , as the ratio of the measured variance to that
predicted for independent data. In the calculation of the statistical inefficiency, we estimate
thepi from the total post-equilibration data set. The statistical inefficiency may equivalently
be calculated as the ratio of (i) the actual number of observations at an energy level to (ii)
the number of observations which would be needed to produce the same fractional error
from independent data. As can be seen in table 1, the statistical inefficiency of the data
with repeatedly rejected moves is very high but the fractional error is little different from
the data collected near the centre of the window for which there are no rejected moves.
Thus, although a large number of states are rejected, this is compensated for by the number
of times these states are observed.

The method may be improved by classifying the sites in the manner shown in table
2 [3, 1]. We may then only consider sites at which a spin flip will lead to a state lying
within W and hence give a successful move. In order to use this approach it is necessary to
maintain appropriate tables after each spin flip [3] and this is computationally efficient only
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Table 1. Typical results of standard microcanonical Monte Carlo simulation of three dimensional
S = 1

2 Ising model on a simple cubic lattice withNs = 4 × 108. ei , Ni, Ri , f
est
i , Rexact

i , χ and
τ are defined in the text.

L3 ei Ni Ri 100× f est
i Rexact

i χ τ

12 6.026× 103 0.2861 2.6 0.2889 0.38 1.1
13 1.724× 103 41.65 2.3 40.98 0.72 0.81
14 7.180× 104 16.39 0.68 16.56 1.5 2.8

103 15 1.177× 106 0.5698 0.37 0.5673 1.2 7.7
16 6.705× 105 25.90 0.40 25.87 0.3 4.6
17 1.737× 107 11.12 0.39 11.17 1.0 1.7 × 102

18 1.932× 108 0.9706 0.33 2.1 × 103

19 1.875× 108 1.8 × 103

12 1.57× 102 0.03185 43 0.03603 0.27 1.5
13 5× 100 427.6 43 332.6 0.67 0.90
14 2.138× 103 123.5 3.8 133.1 1.89 3.1

203 15 2.641× 105 0.07368 2.8 0.07129 1.2 4.6
16 1.946× 104 208.4 4.1 210.0 0.18 15
17 4.055× 106 86.55 3.2 88.71 0.77 4.0 × 103

18 3.510× 108 0.1273 2.7 4.0 × 104

19 4.467× 107 3.6 × 104

Table 2. Classification of sites for two dimensionalS = 1
2 Ising model on a square lattice.

1E/4J is the change in energy if the spin is flipped. In general, the number of classes isq + 1
whereq is the co-ordination number of the lattice.

Class Spin Number of spin-up 1E/4J

nearest neighbours

1 Up 4 2
2 Up 3 1
3 Up 2 0
4 Up 1 −1
5 Up 0 −2
5 Down 4 −2
4 Down 3 −1
3 Down 2 0
2 Down 1 1
1 Down 0 2

for the relatively low energy states where there will be a high number of rejected moves. It
is important to note that the result (2) can only be used directly on levels for which every
move is accepted. Provided the windowW is made sufficiently wide, there will be some
such levels at the centre ofW and this is the approach adopted by Lee. However, this wastes
the move which must still be made in the boundary levels ofW , and it is straightforward
to develop an algorithm which makes use of these levels.

Consider a state for which it is known thatNr sites will lead to rejected moves and
Na sites will lead to accepted moves. If we run the simple spin flip algorithm there will
be a number of rejected moves before a successful move is undertaken and the number of
rejected moves must be counted if the result (2) is to be used. However, we can avoid
undertaking the rejected moves if we consider the underlying process in the random flip
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method. At each flip there is a probabilityPr = Nr(Nr + Na) of the move being rejected
and a probability 1− Pr of the move being accepted and we therefore need to generate
a random number with the same distribution as the number of flips needed to obtain a
successful flip. The probability of makingk flips, of which only the last is successful, is

pk = P k−1
r (1 − Pr) (4)

where 16 k < ∞ and
∑∞

k=1 pk = 1. In order to sample from this distribution we note that
the associated cumulative distribution,Cm, is given by

Cm =
m∑

k=1

P k−1
r (1 − Pr) = 1 − P m

r (5)

Hence if we generate a random number,ξ , uniformly distributed in the range 0< ξ < 1,
the numberm given by

m = Int

[
ln(ξ)

ln(Pr)
+ 1

]
(6)

will have been drawn from the required distribution. Thus, if a statei includes some sites
which will lead to rejected moves, a ‘rejection-free’ algorithm will still be maintained by

(i) randomly selecting the new site from the states which will lead to an accepted move
(ii) generating a numberm as described above and adding this toNi instead of incrementing

Ni by 1.

The results of using this method are shown in table 3. The simulations consisted of
Nequ = 105 equilibration moves andNs = 2.4 × 107 data collection moves. It can be
seen from this table that, once again,Ri data with essentially the same accuracy has been
obtained for all but the lowest energies in the microcanical window,W . The error estimates
from using block averaging are also seen to be reasonable when compared with the errors

Table 3. Typical results of rejection-free microcanonical Monte Carlo simulation of three
dimensionalS = 1

2 Ising model on a simple cubic lattice withNs = 2.4 × 107. Ncorr
i is

the value ofNi corrected by use of equation 6. The quantitiesei , Ni, Ri , f
est
i , Rexact

i , χ, τ ′ and
ε are defined in the text.

L3 ei Ni Ncorr
i Ri 100× f est

i Rexact
i χ τ ′ ε

12 2.763× 104 2.775× 104 0.2939 1.2 0.2889 1.5 0.79 30
13 8.107× 103 8.154× 103 40.35 1.1 40.98 1.5 0.87 28
14 3.280× 105 3.290× 105 16.60 0.26 16.56 1.0 1.6 41

103 15 5.462× 106 5.462× 106 0.5666 0.18 0.5673 0.68 9.9 25
16 3.095× 106 3.095× 106 25.86 0.20 25.87 0.23 4.8 26
17 3.175× 106 8.002× 107 11.19 0.20 11.17 1.1 7.6 23
18 5.824× 106 8.957× 108 0.9675 0.18 19 21
19 6.081× 106 8.666× 108 16

12 6.485× 103 6.489× 103 0.03914 6.7 0.03603 1.3 1.4 260
13 2.530× 102 2.540× 102 310.8 6.5 332.6 1.0 1.1 260
14 7.891× 104 7.894× 104 131.9 0.55 133.1 1.6 2.4 290

203 15 1.041× 107 1.041× 107 0.07173 0.44 0.07129 1.4 4.0 250
16 7.469× 105 7.469× 105 209.6 0.59 210.0 0.34 14 310
17 7.807× 105 1.565× 108 88.35 0.41 88.71 1.0 13 370
18 1.047× 107 1.383× 1010 0.1242 0.43 36 250
19 1.505× 106 1.717× 109 30
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with respect to the exact values (i.e.χ ). The statistical efficiency,τ ′, in this set of data
is calculated using the actual number of observations,Ni , at each level, rather than the
the corrected values since this gives a more realistic measure of the true efficiency of the
method.

The simplest measure of the effectiveness of the rejection-free technique is the relative
efficiency,ε, defined by [12]

ε = σ 2
st tst

σ 2
rf trf

(7)

whereσ 2
st (σ 2

rf ) is the variance andtst (trf ) is the computational time associated with the
standard method (rejection-free method). The times were all measured on the same machine
and no particular effort was made to optimise the code. The rejection-free code took
approximately three times as long per attempted move than the standard code. However,
the probability of a successful move in the highest energy level for the standard method
is ' 1/140 (' 1/1150) for the L = 10 (L = 20) lattices. These values combined with
the time penalty for the rejection-free method are consistent with the effective time saving
implied by the observed efficiencies. It was found that whenEi = Ec, whereEc is the
expected value of the energy at the critical temperature, the efficiency,ε = 1.0 (0.6) for
L = 10 (20).

In conclusion, it has been shown that all the levels in the microcanonical window,
except the lowest, may be used in the microcanical Monte Carlo method and further that a
rejection-free technique is straightforward to devise for all the levels. In the Ising spin-1

2
models this yields a considerable improvement in efficiency over Lee’s [1] algorithm. For
other spin models, such as the Blume Capel [8] model, the gain is expected to be even more
significant.
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